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ABSTRACT Despite being nearly 10 months into the COVID-19 (coronavirus disease
2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syn-
drome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately,
similar problems exist for other betacoronaviruses, and no vouchered specimens exist to
corroborate host species identification for most of these pathogens. This most basic in-
formation is critical to the full understanding and mitigation of emerging zoonotic dis-
eases. To overcome this hurdle, we recommend that host-pathogen researchers adopt
vouchering practices and collaborate with natural history collections to permanently
archive microbiological samples and host specimens. Vouchered specimens and associ-
ated samples provide both repeatability and extension to host-pathogen studies, and
using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic
preparedness. We review several well-known examples that successfully integrate host-
pathogen research with natural history collections (e.g., yellow fever, hantaviruses,
helminths). However, vouchering remains an underutilized practice in such studies.
Using an online survey, we assessed vouchering practices used by microbiologists
(e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much
greater number of respondents permanently archive microbiological samples than
archive host specimens, and less than half of respondents voucher host specimens
from which microbiological samples were lethally collected. To foster collabora-
tions between microbiologists and natural history collections, we provide recom-
mendations for integrating vouchering techniques and archiving of microbiological
samples into host-pathogen studies. This integrative approach exemplifies the pre-
mise underlying One Health initiatives, providing critical infrastructure for
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addressing related issues ranging from public health to global climate change and
the biodiversity crisis.

KEYWORDS biorepositories, coronaviruses, extended specimen, holistic specimen,
museums, Zzoonoses

he current world focus on COVID-19 (coronavirus disease 2019) has brought con-

siderable interest and urgency to efforts to better understand emerging infectious
diseases (EIDs), particularly those that threaten public health. A significant increase in
the transmission and emergence of infectious diseases attributed to novel pathogens
that spill over from animal populations, including domesticated and wild taxa, has
been noted in recent decades (1, 2). SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) (3), the causative agent of COVID-19, has demonstrated that a previ-
ously unknown pathogen can emerge from wildlife species and threaten public health
on a global scale within months. SARS-CoV-2 belongs to a clade of betacoronaviruses
that have been detected in rhinolophid bats (4-6) and pangolins (4, 7, 8). SARS-CoV-2
was initially recognized by Wu et al. (9) as similar to viruses previously reported from
intestinal tissue of Chinese horseshoe bats, Rhinolophus sinicus, despite mitochondrial
cytochrome b sequences identifying the bats sampled as least horseshoe bats
(Rhinolophus pusillus) elsewhere in the same publication (10). However, the exact ani-
mal source of the spillover of SARS-CoV-2 into human populations remains unknown
(4,11).

Despite numerous studies of SARS-CoV-2, the diversity of coronaviruses in bats and
other wildlife species remains understudied. Only 19 coronaviruses had been described
prior to the SARS epidemic in 2002 (12). Multiple research groups subsequently sur-
veyed wildlife populations for SARS-CoV, the virus that causes the human disease SARS
(13-27). Unfortunately, none of these studies included the deposition of vouchered
host specimens for SARS-CoV (or any other coronaviruses detected during the surveys)
in natural history collections, creating a large gap in our ability to further probe the di-
versity, distribution, and basic biology responsible for the transmission of SARS and
SARS-like viruses in wildlife and human populations and the evolutionary processes by
which viruses with pandemic potential evolve in their reservoir hosts. Lack of basic bio-
diversity infrastructure, in the form of vouchered specimen collections, has limited our
ability to respond to the current COVID-19 pandemic yet is critically needed to better
understand other zoonotic pathogens with pandemic potential (28).

Host vouchering (i.e., collection and archiving of host species and/or their tissues in
a permanent repository) in most recent zoonotic pathogen studies has effectively been
nonexistent, including studies relevant to understanding the origins of SARS-CoV-2.
For example, Hu et al. (10) euthanized and necropsied over 300 horseshoe bats (genus
Rhinolophus) while screening for coronaviruses, yet no host voucher specimen(s) or
archived tissue samples were reportedly preserved. None of the cytochrome b sequen-
ces from R. pusillus (n=47) or R. sinicus (n=206) in GenBank as of June 2020 can be
linked to the bats examined by Hu et al. (10). To our knowledge, none of the 30 studies
describing sequences of the subgenus Sarbecovirus (genus Betacoronavirus)—which
includes SARS-CoV-2—from wild mammalian hosts provided any information concern-
ing permanently vouchered material (i.e., 5, 7, 10, 14-27, 29-41).

The same pattern applies to studies of betacoronaviruses. Few studies describing
the recognized viral lineages isolated from wild mammal reservoirs have associated
host specimens archived in a natural history collection (but see references 42 and 43).
Most published studies of betacoronaviruses used oropharyngeal and rectal swabs col-
lected directly from wild mammals or sampled feces or urine samples from caves or
other bat dwellings (34, 44-52). Voucher specimens were either not collected or
archived.

We are aware of only a single study that explicitly mentions the use of vouchered
host specimens as part of an analysis of coronavirus diversity in bats—a study con-
ducted in the western Indian Ocean (43). The vouchered hosts and corresponding
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tissue samples were initially deposited in natural history collections as part of previous
host-pathogen research (53-56). As shown by Joffrin et al. (43), natural history collec-
tions, including associated collections of cryopreserved microbiological samples and
other tissues, have the potential to promote powerful interdisciplinary and historical
approaches to studying emerging zoonotic pathogens (28). Archived specimens repre-
sent a vast, largely untapped, biodiversity infrastructure that can facilitate pathogen
identification and insights into host ecology, immunology, and host-pathogen coevo-
lution and dynamics, which may be necessary ingredients for disease prediction (28).
In this context, we (i) review the importance of host voucher specimens and microbio-
logical samples in host-pathogen research, (ii) examine vouchering practices in the
host-pathogen research community, (iii) provide examples of successful integration of
natural history collections in studies of infectious diseases, and (iv) outline recommen-
dations for engaging natural history collections as resources in preventing future
pandemics.

IMPORTANCE OF VOUCHERING IN HOST-PATHOGEN STUDIES

Making the most of every sampling event. Microbiologists and other researchers
that conduct pathobiology studies typically collect target samples—bacteria, protozo-
ans, viruses, or fungal pathogens—by capturing and sampling wildlife species. While
many microbiological samples do not require sacrificing the host to collect samples
(e.g., blood, urine, feces, oral and rectal swabs), others may require lethal sampling
(e.g., heart, liver, spleen, brain, and digestive tract) (57). Even when intentional lethal
sampling is not a goal of a study, there are frequently accidental deaths of animals dur-
ing capture and handling (58, 59), and it is poor scientific practice and unethical if
resulting carcasses and/or additional microbiological samples are not permanently
archived so that additional insights can come from the deceased animal (60).
Regardless of the goals, studies involving wildlife species should preserve and archive
additional sample types from the host, in addition to the target microbiological sample
for pathogen detection, to properly document the symbiotic relationship and identity
of the host. This is true even when terminal sampling is not required to achieve the
study goals (e.g., when only swabs or blood samples are taken from the host). If only a
few voucher specimens or tissue samples (e.g., “representative samples”) are collected
and archived during a particular study, these samples provide a means of ensuring cor-
rect host identification now and in the future, especially important in species-rich taxa
(e.g., bats, rodents), where taxonomy is uncertain and archived materials would pro-
vide a resource for future studies beyond the focus of the initial study.

The voucher specimen—a tool for pandemic preparedness. Voucher specimens
have long been the backbone of biodiversity science (61-63). Over the last few deca-
des, natural history collections have embraced the holistic or extended specimen con-
cept (64, 65) whereby associated parasites and diverse cryogenically preserved tissues
are associated with each host specimen. The utility of voucher specimens has
expanded in novel ways from their traditional use in systematics and taxonomy to
studies that now also link together stable isotope analyses, next-generation sequenc-
ing, and X-ray computed tomography (CT) scanning (66). Despite these novel uses, the
hallmark features of voucher specimens have remained unchanged—to serve as a
physical record for biodiversity (67), allowing for verification and documentation of
species identifications and distributions, ensuring repeatability in scientific studies, and
allowing subsequent researchers to reexamine and reevaluate archived material long
after their initial collection (68).

Vouchering in host-pathogen research is necessary for the same reasons that it is
important in studies of macroscopic organisms; indeed, it may be more important
since hosts effectively represent the habitat of pathogens. Identification of both the
pathogen and host is critical to fully understand the biology, ecology, evolution, and
potential for transmission of pathogens to other species, including humans and
domesticated animals and plants (69). Without depositing host voucher specimens
and/or tissue samples in natural history collections or other biorepositories, a host-
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pathogen study becomes difficult or impossible to repeat and hence is potentially not
verifiable by other researchers (68, 70). Furthermore, any possibility of isolating addi-
tional coinfecting pathogens is lost when voucher specimens are not collected and
properly archived. This problem becomes especially critical in navigating novel viral
zoonoses, such as the COVID-19 pandemic, where it is necessary for the scientific com-
munity to swiftly and efficiently leverage its collective knowledge and resources to
effectively understand and contain the spread of novel pathogens at a time when lock-
down restrictions hamper on-going collecting efforts (28).

Despite the clear utility of vouchering in host-pathogen research, especially
research focused on EIDs, there are other significant benefits to vouchering that accrue
from the process of archiving samples in natural history collections or biorepositories.
Vouchered host specimens provide scientific replicability, baselines for temporal and
spatial studies, correct taxonomic identification of host species (which may be later re-
vised, e.g., see reference 71), and material for extending research using advanced tech-
nologies. Vouchering also integrates an entire community of researchers into the pub-
lic health sector that otherwise would not typically collaborate (72) and provides
critical expertise about the ecology and evolution of host species to support the One
Health model for tackling EIDs (73). This proactive approach allows the sharing of data
and expertise as well as fostering collaborations to collectively develop novel, creative
insights that provide substantial benefits across diverse scientific fields. In essence,
vouchering provides both an offensive mechanism to pandemic prevention by
expanding the surveillance of wildlife hosts and associated pathogens, in addition to a
defensive mechanism by providing a verifiable temporal and spatial archive for base-
line comparisons.

INSIGHTS INTO CURRENT VOUCHERING PRACTICES IN HOST-PATHOGEN
RESEARCH

We explored current vouchering practices commonly employed by microbiologists
(e.g., virologists, bacteriologists, parasitologists) in host-pathogen research and exis-
tence of collaborations with natural history collections based on an online survey (see
Text S1 in the supplemental material for survey methodology, institutional review
board [IRB] approval, and summarized data). Herein we discuss responses from 109
completed surveys (see Data Set S1 in the supplemental material for raw survey
results). Distribution of the survey through social media resulted in a broad range of
respondents from all continents except Antarctica. Participants were asked to classify
their field(s) of research, and 38.5% indicated two or more disciplines, reflecting the
multidisciplinary nature of microbiological research today. Not surprising given the di-
versity of respondents, 39.4% indicated studying more than one taxonomic group.
Helminths (e.g.,, monogeneans, tapeworms, nematodes, leeches) were the most fre-
quently cited focal taxa, followed by bacteria.

Respondents (n=105) indicated that they collect a number of different microbio-
logical samples using lethal and noninvasive sampling of host species. Of the respond-
ents, 41 (39.0%) indicated that they do not terminally sample hosts as part of any of
their research projects. In contrast, 64 (61.0%) respondents indicated that their
research does at least sometimes incorporate terminal sampling, including opportunis-
tic sampling (e.g., accidental fatalities during capture) or work piggy-backed on other
studies that included lethal sampling (e.g., abattoirs/slaughterhouses, culling of nui-
sance/pest species). Of the 64 respondents that include terminal sampling in at least
some of their research, 36 (56.3%) respondents indicated using only “targeted inten-
tional lethal sampling,” while the remaining respondents use a combination of termi-
nal sampling methods. Importantly, of the 64 respondents who conducted terminal
sampling, six did not collect microbiological samples that required terminal sampling
of hosts (e.g., collected only nonlethal samples such as ectoparasites, excrement, etc.),
and six collected only a single tissue type that required terminal sampling.

January/February 2021 Volume 12 Issue 1 e02698-20

®

mBio

mbio.asm.org 4

Downloaded from https://journals.asm.org/journal/mbio on 21 February 2023 by 64.106.111.97.



Minireview

When participants were asked about practices related to archiving microbiological
samples and host specimens, 75 of 104 respondents (72.1%) permanently archive col-
lected microbiological samples, while only 51 of 107 respondents (47.7%) indicated
that they permanently archive host species. Only 41 respondents (39.4%) report vou-
chering host specimens from which microbiological samples were collected. Of the 75
respondents that archived microbiological samples, 22 (29.3%) reported that they de-
posited their samples in biobanks/biorepositories and 26 (35.0%) deposited them in
natural history collections, both of which typically provide permanent archiving of
samples. However, most frequently, samples were stored in institutional laboratory
space (60.0%), which is typically not accessible to the broader scientific community.
When microbiological samples were reported not to be preserved, the majority of
respondents indicated a lack of institutional infrastructure as the reason. These trends
were generally reversed for the 51 respondents that reported permanently archiving
host specimens in their studies, where 31 of the 51 (61.0%) indicated that their vouch-
ers were deposited at natural history collections. For the 19 (30%) respondents who
indicated that they include lethal sampling of hosts in their research but do not pre-
serve voucher specimens, “no tradition of vouchering in my institute” and “no institu-
tional infrastructure” were equally cited as the reason.

When participants were asked if they had ever collaborated with or deposited voucher
specimens in a natural history collection, 44 of 105 respondents (41.9%) replied “yes”
whereas 50 (47.6%) replied “no.” In addition, 11 (10.5%) indicated that they were unsure
how to collaborate with a natural history collection. Of the 48 respondents who
addressed the value of collecting host voucher specimens for studies of microorganisms,
nearly all (93.8%) spoke to the benefits, often in terms of increased rigor and reproducibil-
ity of studies, with one reporting “The host is half of the equation in any host-parasite
interaction, why wouldn't we be vouchering the host?.” Three respondents did not see
the value of vouchering, and one respondent expressed concerns about the biosafety of
depositing specimens in a collection. Along this line, of the 42 respondents who wrote
about their experiences working with natural history collections, 10 (24.4%) discussed
problems, including sample types not being accepted, lost samples, and onerous logisti-
cal issues.

ROLE OF NATURAL HISTORY COLLECTIONS IN HOST-PATHOGEN RESEARCH

“Extending” the voucher specimen. Biodiversity data archived in the natural his-
tory collections and biorepositories around the world continue to increase as novel
questions arise and new research disciplines become aware of their existence (74). The
past few decades have seen increasing collaborations between microbiologists and
biodiversity scientists as the concept of the “holistic” or “extended” specimen has been
adopted by more natural history collections (75). Under this paradigm, host and para-
site specimens are collected simultaneously, along with associated cryopreserved tis-
sues and microbiological samples, and all are linked through bioinformatics even if
they are stored in different repositories (57, 76, 77). The merits of making these holistic
collections are numerous as they naturally promote more integrated science (57, 64,
78). Integration of the “extended specimen” concept into host-pathogen research is
now beginning as it is slowly becoming recognized as an essential part of zoonotic dis-
ease surveillance (69, 70, 72, 79).

Better integration of natural history collections in infectious disease studies would
likely provide more clarity about the various roles of environmental change (e.g., biodi-
versity loss, climate change, land use change) (80) in the emergence of novel zoonoses
(81). Such human-driven disturbances provide increased opportunities for pathogen
transmission among host species (i.e., host switching from one wildlife species to
others) resulting in heightened risk to public health, but risk assessment is difficult
because we lack detailed information regarding naturally occurring host-pathogen
relationships (78). Control of potentially zoonotic pathogens through targeted risk
management (e.g., reducing contact between humans and reservoir hosts) is likely to
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TABLE 1 Selected examples of host-pathogen studies that deposited and/or studied vouchered host specimens and microbiological samples

in natural history collections

®

Pathogen Disease Host(s) Natural history collection(s) Reference(s)
Viruses
Arenaviridae
Guanarito virus Venezuelan hemorrhagic  Rodents American Museum of Natural History 155
fever
Whitewater Arroyo virus Hemorrhagic fever Rodents Natural Science Research Laboratory, 156, 157
syndrome Texas Tech University
Coronaviridae
Alpha- and betacoronaviruses Pathogenicity unknown Bats Field Museum of Natural History 43
Middle East respiratory Pathogenicity unknown Bats (Neoromicia spp.)  Ditsong National Museum of Natural 42
syndrome (MERS)-related History
betacoronavirus®
Flaviviridae
Flavivirus spp. Yellow fever Various American Museum of Natural History, 86, 87,90,
Smithsonian National Museum of Natural ~ 158-163
History, and Museu Nacional/
Universidade Federal do Rio de Janeiro
Filoviridae
Ebolavirus Ebola hemorrhagic fever ~ Vertebrates Royal Museum of Central Africa and 110
Museum of Southwestern Biology
Hantaviridae
Laguna Negra virus Hantavirus pulmonary Rodents (Calomys Field Museum of Natural History 164
syndrome laucha)
Sin Nombre virus Hantavirus pulmonary Rodents Museum of Southwestern Biology 94, 165
syndrome
Anajatuba, Castelo dos Sonhos ~ Hantavirus pulmonary Rodents (Oligoryzomys ~ Museu Nacional/Universidade Federal do 70, 96
viruses syndrome spp.) Rio de Janeiro
Luteoviridae
Barley yellow dwarf virus Barley yellow dwarf Grasses University and Jepson Herbaria, 166
University of California, Berkeley, and
Center for Plant Diversity, University of
California, Davis
Poxviridae
Monkeypox virus Monkeypox Squirrels American Museum of Natural History 167
Monkeypox virus Monkeypox Small mammals Field Museum of Natural History 168
Parasites
Arthropods
Trombiculidae Scrub typhus (Rickettsia) ~ Rodents Smithsonian National Museum of 169
Natural History
Syringophilidae Ectoparasitic infestation Birds Natural History Department of Sarisske 170
Museum
Trichodectidae Ectoparasitic infestation Gopher (Cratogeomys ~ Museum of Natural Science, Louisiana 171
spp.) State University
Ixodoidea Multiple tick-borne Mammals Field Museum of Natural History 172,173
diseases
Helminths
Rictulariidae
Paucipectines hymanae Endoparasitic infection Shrew opossum Field Museum of Natural History 174
Spiruridae
Protospirura spp. Endoparasitic infection Rodents Muséum National d'Histoire Naturelle 175
Philometridae
Clavinema marina Endoparasitic infection English sole (Parophrys ~ Burke Museum of Natural History & 108
vetulus) Culture
Metastrongylidae
Skrjabingylus spp. Leptomeningitis Skunks Angelo State Natural History Collection 176
Dactylogyridae
Cichlidogyrus spp. Ectoparasitic infection Cichlid fish Royal Museum of Central Africa 104,177
Schistosomatidae
Schistosoma spp. Schistosomiasis Gastropods Natural History Museum, London 178
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TABLE 1 (Continued)

mBio’

Pathogen Disease Host(s) Natural history collection(s) Reference(s)
Prokaryotes
Trypanosomatidae
Trypanosoma lewisi Chagas disease Rodents (Rattus spp.) Natural History Museum, London, 179
Museum of Zoology, University of
Cambridge and Oxford University
Museum of Natural History
Unicellular eukaryotes
Plasmodiidae
Plasmodium spp. Malaria Bats, primates, Field Museum of Natural History 180-183
rodents
Hepatocystis sp. Malaria Bats Smithsonian National Museum of Natural 184
History
Nycteria sp. Malaria Bats Smithsonian National Museum of Natural 185
History
Bacteria
Leptospiraceae
Leptospira spp. Leptospirosis Small mammals Field Museum of Natural History 186, 187
Mycobacteriaceae
Mycobacterium tuberculosis Tuberculosis Bison cf. antiquus Carnegie Museum; University of Kansas 188
Museum of Natural History
Yersiniaceae
Yersinia pestis Plague Homo sapiens State Collection for Anthropology and 189
Palaeoanatomy
Yersinia pestis Plague Rodents Museu Nacional/Universidade Federal 88
do Rio de Janeiro
Fungi
Peronosporaceae
Phytophthora infestans Potato blight Potato Various herbaria 190-192
Pseudeurotiaceae
Pseudogymnoascus destructans ~ White-nose syndrome Myotis bechsteinii National Museum of Natural History 193
Meripilaceae
Rigidoporus microporus White rot disease Rubber tree (Hevea Botanical Museum, Finnish Museum of 194

brasiliensis)

Natural History & Botanical Museum,
University of Helsinki

aMERS, Middle Eastern respiratory syndrome.

be more effective than retroactive efforts aimed at eradicating zoonoses after they
have spilled over into human populations (82). However, rigorous and successful pre-
vention strategies require knowledge of historic and contemporary distributions,
occurrence, and ecology and evolutionary history of host species in host-pathogen sys-
tems. Those critical assessments rely on information that largely resides in natural his-
tory collections (78, 83).

Below, we highlight three examples of successful integration of host-pathogen
research and natural history collections in collaborative research programs focused on
pathogens (i.e., yellow fever, hantaviruses, and helminths), as well as provide an exam-
ple of a failed integration (i.e., ebolaviruses). Additional examples are provided in
Table 1.

Yellow fever. One of the earliest efforts to employ comprehensive host and patho-
gen collection, vouchering, and data recording was the Yellow Fever Service, an orga-
nization maintained in the 1930s by the Brazilian Ministry of Education with the coop-
eration of the International Health Division of the Rockefeller Foundation (84, 85). The
program was truly multidisciplinary, including fieldwork in collaboration with research-
ers from natural history collections to identify the animal reservoirs of the virus
(86-88). As a result of the Yellow Fever Service, tens of thousands of voucher speci-
mens, including amphibians, birds, mammals, and reptiles, were collected and depos-
ited in natural history collections, and these have been employed in subsequent stud-
ies on systematics, ecology, evolution, and conservation biology of mammal species.
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Each sampled specimen was accompanied by extensive and standardized field notes
(86), and the samples are accessible to researchers for further study. Among the major
outcomes of this collaborative endeavor was the discovery of a sylvatic transmission
cycle of the yellow fever virus (88, 89), eradication of Aedes aegypti in Brazil (90, 91)
(albeit for just a few decades), and understanding primate population ecology and
transmission risk of the yellow fever virus (92, 93).

The idea that voucher specimens provide scientific replicability, baseline data for
temporal studies, correct taxonomic identification of host species, and material for
future technological advances in host-pathogen research is clear in the seminal publi-
cation on results of the Yellow Fever Service by Gilmore (86):

The preservation of specimens for absolute identification in public health
investigations is generally an acute problem, because trained field zoologists are
often absent, and because the technique is a special one. With this in mind it is
suggested that the documentation of every specimen by a protocol, with a few
skins temporarily preserved by thorough drying in shape and the saving of even
skulls of every different recognizable kind, designated consistently by the same
common name, will enable identifications to be made at a later date with a
certain amount of surety.

Hantaviruses. Hantaviruses provide one of the best examples of how to integrate
natural history collections with infectious disease research (72, 94). Natural history col-
lections have provided reference libraries for proactive and rapid identification of host
species, in addition to temporal and spatial patterns, of new hantavirus strains. For
instance, in 1993, pathobiologists were able to quickly identify the reservoir host of a
novel hantavirus (Sin Nombre) responsible for a cluster of deaths in the Four Corners
region of the southwestern United States by screening archived rodent specimens at
the Museum of Southwestern Biology at the University of New Mexico and Natural
Sciences Research Laboratory at Texas Tech University and determine that this novel
virus had been present in host populations dating back at least as far as samples were
available for screening (late 1970s) (94). New analyses or taxonomic revisions have also
resulted in a revised understanding of the identities of many pathogen reservoirs sub-
sequent to their original description. For example, recent systematic revisions of
pygmy rice rats (genus Oligoryzomys) (i.e., 71, 95-98) have refined our understanding
of this taxonomic group and have led to the recognition that many host reservoirs of
hantaviruses have restricted geographic distributions. Changes resulting from studies
of vouchered host specimens have led to the reassignment of host names for numer-
ous hantaviruses of public health importance (e.g., Anajatuba, Bermejo-Neembucu,
Castelo dos Sonhos, Choclo, and Maporal viruses) (99). In addition, the finding that
hantaviruses occur in moles, shrews, and bats based on screening archived specimens
from natural history collections has falsified the paradigm that this is solely a rodent-
borne virus (100-102) and substantially changed our understanding of this family of
pathogenic viruses.

Helminths. Mainly drawing from examples in fish parasitology, an inspection of
host specimens originally not intended for parasitological research can serve a range
of applications in the study of helminths (parasitic worms). Similar to research on other
fish parasites that are unpredictable in prevalence or abundance (e.g., cymothoid iso-
pods) (103), archived host specimens have later been used to describe new helminth
species (104). For example, Kmentova et al. (105) characterized gill-infecting monogen-
eans of freshwater lates perch throughout Africa based on previously collected speci-
mens. However, perhaps the most explicit advantage of voucher specimens to helmin-
thological research is that natural history collections allow the inference of baseline
data about parasite communities across various timescales. This potential for tracking
disease emergence via shifts in pathogen occurrence and/or abundance and linking
with environmental change was, to quote Harmon et al. (106), “hiding in plain sight"—
collections of host specimens are indeed heavily underexplored for this purpose. Black
(107) confirmed, from archived specimens of the lake trout (Salvelinus namaycush), the
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presence of the nematode Cystidicola stigmatura which has recently disappeared as a
result of dwindling host abundance. Conversely, Howard et al. (108) demonstrated
over a 9-decade time span the increased prevalence of the nematode Clavinema
mariae infecting Puget Sound English sole (Parophrys vetulus). Invasion biology is
another field where natural history collections provide a unique opportunity to estab-
lish a historical baseline for often understudied helminth communities. For example,
Jorissen et al. (109) compared the monogenean gill parasites of historic and recent tila-
pia populations in Central Africa. This allowed distinguishing flatworms naturally
infecting native fishes from those appearing only after cointroduction with nonnative
tilapia species (and subsequent host switching).

Ebolaviruses. Ebolaviruses represent a group of pathogens where a lack of high-
quality vouchered specimens across temporal scales has created a direct impediment
to identifying putative reservoir hosts (110). Ranging from insects to antelopes (111),
the identification of both reservoir host(s) and susceptible host populations remains
largely unknown (112), although bats have been implicated as reservoir hosts for
Reston ebolavirus (113), Bombali ebolavirus (114, 115), and Zaire ebolavirus (116, 117)
but see Leendertz et al. (118) and Caron et al. (111). The ability to identify wildlife hosts
of ebolaviruses is limited by a lack of centralized repositories of historical and modern
voucher specimens, especially for mammal species, across the Afrotropics (119, 120).

Impediments in detecting ebolavirus hosts are related to both the distribution of
the virus, most notably in the megadiverse and remote regions of the Afrotropics, and
the highly unpredictable persistence of the virus in a host (116). Specifically, the preva-
lence of ebolaviruses circulating in populations of putative hosts, such as bats, can
vary greatly across short periods of time (116) and is often lower (118) than prevalen-
ces observed in other viruses whose hosts have been identified more rapidly with the
aid of voucher specimens (see the “Hantaviruses” section above). Furthermore, for
mammals, the most targeted ebolavirus hosts thus far, the Afrotropics represents a hot
spot of evolutionary diversity, with one recent study predicting at least 122 undiscov-
ered species (121). Moreover, recent phylogenetic research using voucher specimens
from natural history collections has indicated high levels of cryptic diversity in
Miniopterus (122), a bat genus speculated to be a reservoir host for Zaire ebolavirus
(123). Furthermore, studies on other filoviruses such as Marburg virus have found sam-
ples of different organs and body fluids (e.g., blood, colon, and oral-mucosa) collected
from bats to be less effective than combined samples of liver and spleen in identifying
positively infected bats (i.e., Rousettus aegyptiacus) using quantitative reverse transcrip-
tion-PCR (Q-RT-PCR) (124, 125). Regardless of sample type collected and low preva-
lence rates of ebolavirus, limited sample sizes per host species from large and non-
randomized studies offer limited insight into our understanding of ebolaviruses (117).

A lack of historic and recent voucher specimens of mammals from the Afrotropics
hinders effective predictions and identification of potential reservoir hosts of ebolavi-
ruses in a number of ways. First, lack of historic material limits the ability to answer his-
torical evolutionary questions regarding virus evolution, such as the consequences of
viral population size on lineage extinctions through time (126). Second, a lack of sys-
tematically collected and holistic specimens of diverse groups of potential hosts such
as bats, combined with myopic sampling of specific taxonomic groups (e.g., fruit bats)
has resulted in biased sampling effort that underrepresents the true diversity of hosts
(118). Third, a lack of archived samples available for screening pre- and postdisturb-
ance by humans—a process thought to increase ebolavirus spillover between bats and
humans (127)—limits our ability to understand the impacts of such processes on viral
and host dynamics. Finally, although recent efforts to sample deceased mammals, a
potentially important source of ebolavirus infection data (128), across parts of the
Congo should be applauded (129), the lack of involvement of natural history collec-
tions in disease surveillance efforts is concerning (28).
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BEST PRACTICES FOR INTEGRATING NATURAL HISTORY COLLECTIONS IN
HOST-PATHOGEN STUDIES

Natural history collections have evolved to incorporate best practices for field col-
lection, vouchering, sample preservation, and data sharing (74), creating a vast
resource of globally distributed collections (e.g., 130-132). These best practices revolve
around the voucher specimen as the common currency, which has resulted in a pre-
dictable workflow (Fig. 1). We highlight five critical steps in this workflow and provide
recommendations for integrating vouchering techniques in infectious disease studies
and fostering collaboration between natural history collections and the microbiological
research community (see also Table S1 in the supplemental material for a nonexhaus-
tive overview of collections with experience in host-pathogen research collaborations).

Step 1. Sampling event. Sampling design is one of the most basic components of
research. Given the complexity and nuances of wildlife research, early planning is criti-
cal, especially when working with pathogens. In addition to standard institutional ani-
mal care and biosafety protocols, local, state, and federal permits are often needed to
sample and/or collect wildlife species. For international work, import and export per-
mits, material transfer agreements, and compliance with the Nagoya Protocol on
Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising
from their Utilization to the Convention on Biological Diversity may be necessary, as
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well as Convention on International Trade in Endangered Species (CITES) permits when
dealing with threatened and endangered taxa. Natural history collections often have
blanket permits and personnel (e.g., collection managers, registrars) that can assist in
navigating wildlife research with relative ease. Integrating natural history collections
early in sampling design would provide host-pathogen researchers the opportunity to
leverage these resources, minimizing problems in downstream applications.

Broad temporal and spatial surveys of host taxa should have sample sizes sufficient
to not only detect pathogens (which can occur at widely ranging prevalence rates, e.g.,
bat-borne viruses can range between 0 and 100% depending on sample type and viral
family) (133) but also provide some level of natural history information about the tar-
get pathogen (94). For mammals, such as rodents, which tend to have large population
sizes and high reproductive rates, targeted lethal sampling has been shown to not
have significant adverse effects on population structure or density (134). For taxa that
are threatened, long-lived, and/or have low reproductive rates (e.g., many bat and pri-
mate species), more limited collection efforts combined with nonlethal sampling meth-
ods (e.g., swabs, feces) may be necessary. Animals should be captured, handled, and
euthanized following community standards for ethical care and use of vertebrates in
research; for mammals, guidelines are provided by Sikes et al. (135).

Capture-sample-release surveys typically do not allow for repeatability or extension
of the research (64). However, in some cases, nonlethal sampling may be all that is per-
mitted. In these situations, sampling should still be maximized. Oropharyngeal and rec-
tal swabs, feces, hair samples, ectoparasites, and wing punches or ear clips should be
collected. Sample volume should also be maximized to provide sufficient material for
multiple tests (i.e., isotopic analyses). Standard measurements and photographs of the
host should also be taken to aid in species-level identification. However, measure-
ments and photos are only complementary and alone are often not sufficient to pro-
vide unambiguous identification of hosts, particularly for diverse taxonomic groups
with numerous cryptic species (e.g., rodents and bats) (120). Voucher specimens are
the only reliable option to ensure repeatability and should be considered the gold
standard in host-pathogen studies (70).

When hosts are euthanized or incidental deaths occur during nonlethal surveys, it is
important to maximize the diversity of tissue types that are collected and preserved.
Samples should be collected from the host immediately after death, and ideally, sam-
ples should be stored at ultracold temperatures (e.g., liquid nitrogen, dry ice) upon col-
lection. Samples should be archived long-term in an ultracold (-80°C) freezer—but
preferably in a vapor-phase nitrogen (-190°C) freezer—at accredited natural history
collections and publicly available for use by qualified researchers (136). Alternatively, if
tissue collection from hosts is not possible due to limitations in expertise, time, and/or
funding, specimens can be preserved in formalin or alcohol (137). These low-cost
options allow researchers the ability to obtain a verifiable voucher when euthanizing
potential hosts and provide genetic material for species identification (138). An added
benefit of formalin fixation of voucher specimens is that it is an approved method for
inactivating viruses according to the Centers for Disease Control and Prevention (CDC)
(139), thus rendering the deposited specimens noninfectious.

Step 2. Depositing host specimens and tissue samples. Natural history collections
accession voucher specimens and associated tissue samples routinely as part of their mis-
sion. Although each institution has its own accession protocols (140), most natural history
collections do not charge donors for depositing voucher specimens and tissue samples,
but early communication prior to a collection event is recommended in order to address
any logistical or financial hurdles. All deposits of voucher specimens and tissues require
documentation showing the legal framework under which they were obtained, as well as
any data associated with the deposited materials to confirm their legal status.

To facilitate accessibility to the broader scientific community, researchers should
shift samples from their personal laboratories to permanent repositories such as natu-
ral history collections when samples are no longer needed for the original study.
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Alternatively, most natural history collections will place temporary embargoes on de-
posited specimens and samples to allow for the original study to continue while ensur-
ing they are permanently and safely archived. Of course, if a researcher is engaged col-
laboratively with a curator or collection manager, this process will be part of project
development and integrated into the study design.

Full metadata should be included with each specimen and sample. The most basic
metadata minimally required by all natural history collections are collection date, geo-
graphic location (preferably including both a textual locality and GPS coordinates), col-
lector's name, and some level of taxonomic identification. In addition, depending on
the disposition of the specimens, vouchers often include taxon-specific measurement
and life history data. Even when collecting nonlethal samples, metadata should be
recorded and shared with the receiving institution when depositing samples.

Last, the receiving institution will formally accession the deposited specimens and/
or samples in order to transfer custody to the natural history collection (141). Although
custody of the voucher specimens and samples has changed, an embargo can remain
in place to allow time for publication and the development of additional projects. This
time period also allows collection managers and curators to verify species identifica-
tions, curate metadata, and assign formal catalog numbers to the voucher specimens
and/or samples (e.g.,, MSB:Mamm:89863). For researchers engaged in host-pathogen
research, this process provides verification of the host vouchers based on current tax-
onomy, in addition to assignment of a globally unique identifier (GUID) associated
with the specimen. GUIDs allow the scientific community the opportunity to digitally
curate voucher specimens and link data repositories, literature, and other resources to
the specimen (142). Voucher specimens and samples are of no value if they are not
given unambiguous unique numbers, thereby preventing data linkage.

Step 3. Archiving microbiological samples. Archiving microbiological samples from
host species that may be infectious requires considering the biosafety capabilities of the
receiving collections. Researchers should inform the receiving natural history collection of
pathogens detected in deposited samples as well as any treatments to the vouchers and/
or tissue samples to deactivate specific pathogens of concern. Concomitantly, the natural
history collection should inform the donor of any limitations in their ability to receive
potentially pathogenic samples. However, many natural history collections maintain bio-
repositories to complement their vouchered host collections (143) and utilize best prac-
tices for sample curation and personnel safety (136, 144). Specifically, museum personnel
should be trained in biosafety protocols for handling pathogenic samples and implemen-
tation of increased security measures, such as restricted access to designated areas where
pathogenic samples are stored. In addition, if future research is to be conducted using
pathogenic samples, many natural history collections are equipped with biosafety level 1
and/or 2 laboratory space. Under certain circumstances, in particular research on desig-
nated CDC Select Agents, samples need to be deposited in a biorepository or biobank
with higher biosafety level capabilities (145).

Similar to vouchering host specimens and tissues, pathogenic samples should be
well-documented with appropriate permits and metadata. Ideally, the metadata
should include all data associated with the host species plus pathogen-specific infor-
mation. When possible, a molecular identification (e.g., nucleic acid sequence) for both
the host (symbiotype) and pathogen should be included so that their identities can
readily be placed on the Tree of Life and provide a basis for identifying sister species
that may serve as potential hosts for related pathogens. GUIDs also should be assigned
to microbiological samples and related back to the host specimen record.

Step 4. Specimen access and data sharing. The archiving institution should main-
tain a relational collections database (e.g., Arctos, EMu, Specify), which should be
linked to biodiversity data aggregators (e.g., GBIF, iDigBio, FishBase, and VertNet) and
data repositories (e.g., GenBank, IsoBank, MorphoSource) through reciprocal linkages
or via an integrated publishing toolkit (146). By assigning GUIDs during the archiving
process, researchers can connect these typically disparate data sets into a single aggre-
gated view of associated vouchered specimens and samples through online searchable
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databases. This allows all derivative data to be tied back to the original vouchered
specimen and/or sample (147), allowing for a more integrated approach to host-patho-
gen research (72). Any updates made to the vouchered specimen (e.g., species identifi-
cation, georeferencing, new data sets) would be updated through the network of
aggregators and repositories and be made available to the end user. In addition, this
makes the vouchers discoverable and available to researchers both remotely online
and physically through collection visits and loans.

Step 5. Publication and data repositories. Citing accession numbers of vouchered
specimens and/or samples in publications is essential to link data sets back to natural
history collections and biorepositories. A full list of specimens examined and the associ-
ated pathogen screening results should be included in publications or minimally available
as supplemental material. The individual host specimen from which the novel pathogen is
sequenced and/or isolated, and then described, should also be formally designated a sym-
biotype, along with other specimens from the type series containing the novel pathogen
(i.e., symbioparatypes) (148). Symbiotype identity should be confirmed with a DNA
sequence (e.g., cytochrome b for mammals) and deposited in National Center for
Biotechnology Information (NCBI) BioSample. The biosample attribute “voucher_speci-
men” is linked to the species name in the biosample. If you are submitting a pathogen
sequence (including a full genome), a new attribute, host_specimen_voucher, should be
used to store the museum catalog number of host specimen information for SARS-CoV-2
(or any other pathogen). For GenBank submissions, it is recommended to link to a regis-
tered BioSample (see reference 149). When naming newly discovered pathogens, the sym-
biotype catalog number should be included in the name (e.g., Camp Ripley virus, MSB:
Mamm:89863) to facilitate linkage between host and pathogen. This same approach
should be used when depositing data sets on Dryad and other publicly available data
repositories, allowing for linkages back to the physical voucher specimen (147).

CONCLUSIONS

The COVID-19 pandemic has exposed many weaknesses in the current public health
approach to zoonotic spillover events and has reinforced the need for shifting to an
integrated One Health approach for addressing EIDs (150). In particular, the critical im-
portance of identifying a definitive host of SARS-CoV-2 (4, 11) coupled with the unprec-
edented potential of current molecular techniques to reinvestigate historic material
archived in natural history collections (e.g., human immunodeficiency virus 1 [HIV-1]
genome recovered from samples collected in 1966, prior to the discovery of acquired
immunodeficiency syndrome [AIDS]) (151) highlights the need for a more integrated
approach to surveillance and mitigation of EIDs (70). Vouchering host specimens and
associated tissue samples in natural history collections is one of the most effective
means of overcoming this hurdle.

To meet their promise of substantially contributing to infectious disease studies,
however, natural history collections must grow exponentially in the coming decades
(152, 153) and invest in methodology and infrastructure development which meets
best practices to maximize the utility of deposited specimens and samples for future
research projects (57, 64, 70, 136). When properly cared for (140), natural history collec-
tions can last centuries, providing a physical record for current and future pandemics
(148). By vouchering and depositing host specimens, associated tissue, and microbio-
logical samples in natural history collections, the host-pathogen research community
will contribute to future research endeavors and mobilize a large community of biodi-
versity scientists into One Health networks (154).
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